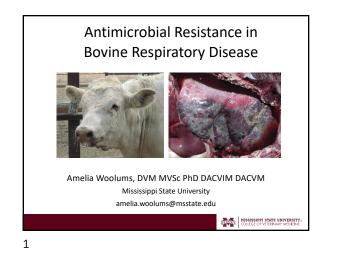
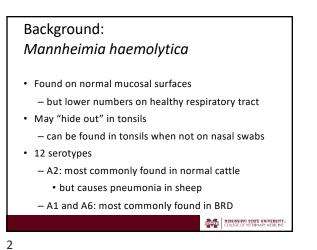


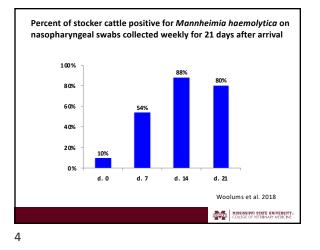
2025 Winter CE Conference

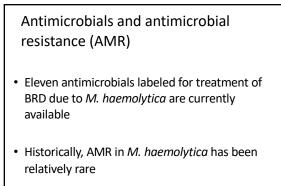
February 1 and 2

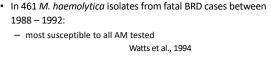

Dr. Amelia Woolums DVM, PhD, DACVM Mississippi State University College of Veterinary Medicine


Antimicrobial Resistance in Bovine Respiratory Disease

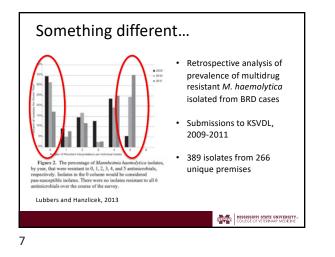
Generously sponsored by:







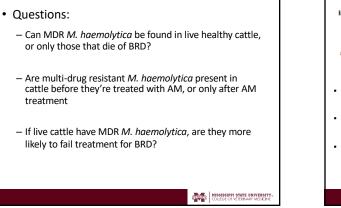
 In the days after cattle are shipped or co-mingled, *M. haemolytica* proliferates rapidly in the nasopharynx
 Serotypes A1 or A6 predominate over the "more normal" seroytype A2



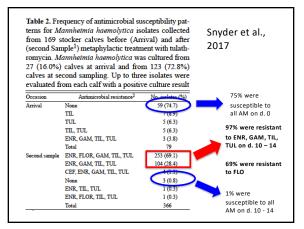
MISSISSIPPI STATE UNIVERSITY... COLLEGE OF VETERINARY MEDICINE

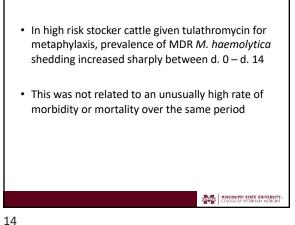
- M. haemolytica isolates collected from cattle dying of BRD between 1994 2002
 - stable and low rates of resistance to ceftiofur + enrofloxacin
- resistance to tetracycline was more prevalent Welsh et al., 2004
 In 409 *M. haemolytica* isolates collected by nasopharyngeal swab at feedlot entry and within 30 days exit

 0% resistant to ceftiofur, enrofloxacin, and florfenicol
 4% resistant to oxytetracycline
 - Klima et al., 2011

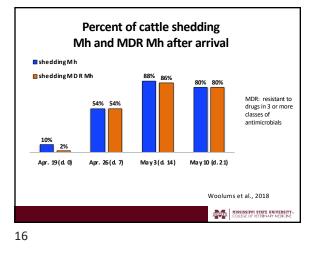


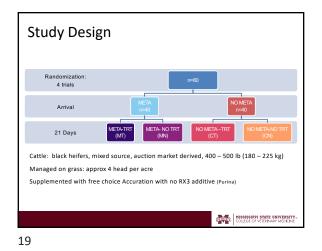
<section-header><section-header><text><text><text><text><text>

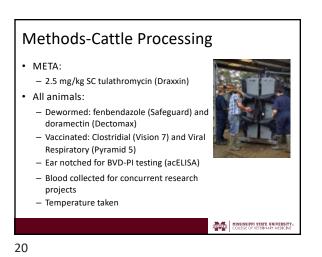

A *P. multocida* isolate from a Nebraska feedlot BRD case contained a genetic element that encoded resistance for 11 different AM
This genetic element could be transferred from the *P. multocida* to *E. coli* or *M. haemolytica*, conferring resistance in these recipient bacteria

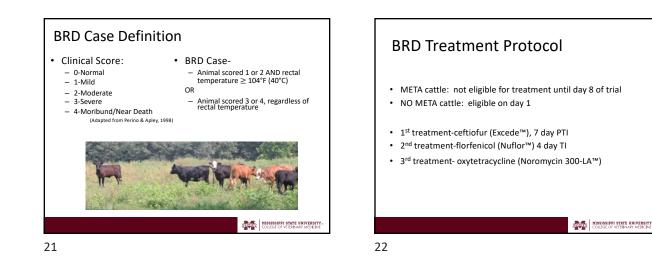

> HISSISSIPPI STATE UNIVERSITY COLLEGE OF VETERINARY MEDICINE

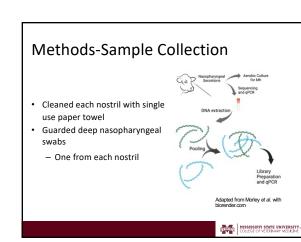
9

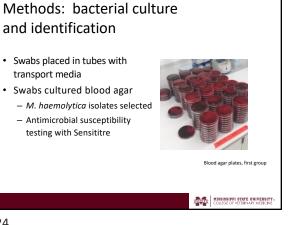

Prevalence of multi drug antimicrobial resistance in Mannheimia haemolytical isolated from high-risk stocker cattle at arrival and two weeks after processing¹
 E. Suyder, * B. Credille, *² R. Berghaus, * and S. Gigairet
 "University of Georga, Food Annul Heith and Maagement Program. Department of Flaghtaine Heith, College of Viternary Medicine, Athens 30002
 J. Anim, Sci. 2017.95:1124–1131 doi:10.2527/jas2016.1110
 Collected nasopharyngeal swabs from 169 high risk stocker cattle at arrival and 10 – 14 days later
 All cattle received tulathromycin for metaphylaxis after collection of d. 0 swab
 Eight cattle were treated for BRD (florfenicol) before d. 14, and one died
 Second swab collected from these cattle before BRD treatment

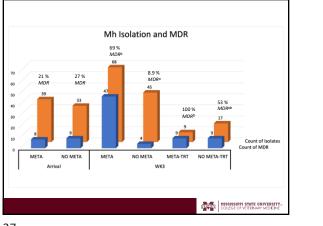


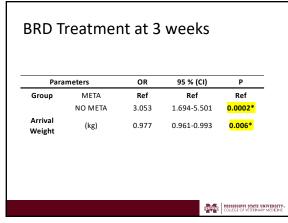

Clinical trial: effects of tulathromycin metaphylaxis on health and AMR in stocker cattle

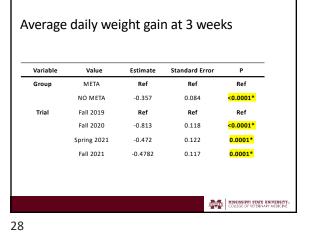

Objectives:

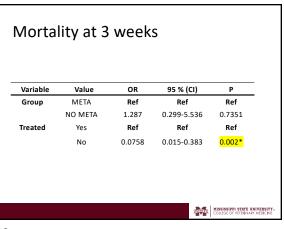

- Determine the effect of macrolide metaphylaxis on:
 - Antimicrobial resistance in M. haemolytica
 - Phenotype (culture & sensitivity)
 - Metagenome (18S)
 - Resistome (Target-enriched AR gene shotgun sequencing)
 - Health and production outcomes
 - Morbidity
 - Mortality
 - Weight gain


HISSISSIPPI STATE UNIVERSITY. COLLEGE OF VETERINARY MEDICINE

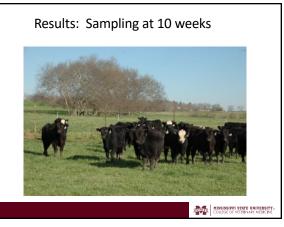


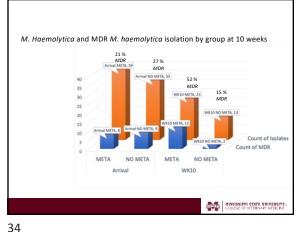




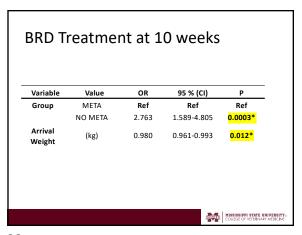


	Wei	ght g	ain and h	ealth	at 3 we	eks	
Trial	Group	n	ADG (95% CI) (kg)	Animals Treated n (%)	Animals Treated (BRD) n (%)	2+ BRD Treatments n n (% of Treat)	Mortality n (%)
Fall 2019	META	41	1.48 (1.20-1.77)	11(27)	9 (22)	1 (11)	0 (0)
	NO META	41	1.00 (0.66-1.30)	9 (22)	7 (17)	0 (0)	0 (0)
	All	82	1.21 (0.83-1.65)	20 (24)	16 (20)	1 (6)	0 (0)
Fall 2020	META	42	0.54 (0.22-1.08)	8 (19)	6 (14)	0 (0)	1 (2)
	NO META	41	0.22 (-0.22 -0.71)	10 (24)	10 (24)	1 (10)	2 (5)
	All	83	0.43 (-0.11-0.97)	18 (22)	16 (19)	1 (6)	3 (4)
Spring 2021	META	41	0.86 (0.33-1.23)	4ª (10)	4ª (10)	1 (25)	2 (5)
	NO META	39	0.70 (0.22-1.40)	17 ^b (44)	17 ^b (44)	1 (6)	3 (8)
	All	80	0.83 (0.26-1.32)	21 (26)	21 (26)	2 (10)	5 (6)
Fall 2021	META	41	1.02 (0.54-1.49)	1a (2)	1a (2)	0 (0)	0 (0)
	NO META	42	0.78 (-0.02-1.13)	12 ^b (29)	12 ^b (29)	2 (17)	1 (2)
	All	83	0.90 (0.33-1.23)	13 (16)	13 (16)	2 (15)	1 (1)
Overall	META	165	1.02ª (0.43-1.49)	24ª (15)	20ª (12)	2 (10)	3 (2)
	NO META	163	0.70 ^b (0.16-1.18)	48 ^b (29)	46 ^b (28)	4 (9)	6 (4)
	All	328	0.89 (0.3-1.34)	75 (23)	66 (20)	6 (9)	9 (3)

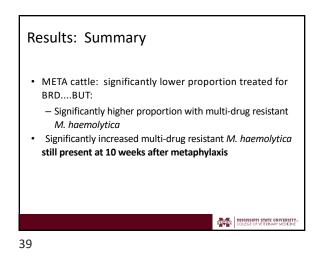


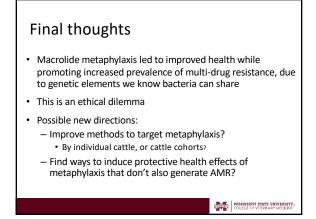


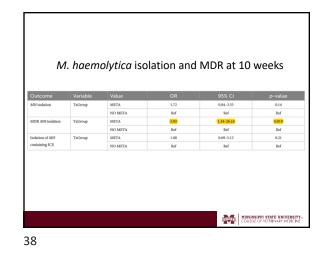
Outcome	Variable	Value	OR	95% CI	p-value
dH isolation	TxGroup	META	1.41	0.90-2.22	0.13
		NO META	Ref	Ref	Ref
IDR MH isolation	TxGroup	META	13.08	5.54-30.88	<0.0001
		NO META	Ref	Ref	Ref
	(BRD Treatment x FeverAR)	Interaction			0.02
		N x N	Ref	Ref	Ref ^{ab}
		YXY	9.70	1.63-57.78	0.061*
		N x Y	0.18	0.05-0.65	0.009
		Y x N	3.83	1.39-10.58	0.01

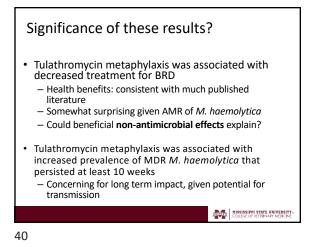

	Weig	ht ga	ain and h	nealth	at 10	weeks	
Trial	Group	n	ADG (95% CI) (kg)	Animals Treated n (%)	Animals Treated (BRD) n (%)	2+ BRD Treatments n n (% of Treat)	Mortality n (%)
Fall 2019	META	41	0.96 (0.87-1.17)	11 (27)	9 (22)	1 (11)	0
	NO META	41	0.89 (0.72-0.96)	11 (27)	9 (22)	0 (0)	0
	All	82	0.92 (0.79-1.08)	22 (27)	18 (22)	1 (6)	0
Fall 2020	META	42	0.83 (0.64-0.93)	9 (21)	7 (17)	0 (0)	2 (5)
	NO META	41	0.65 (0.42-0.86)	12 (29)	10 (24)	1 (10)	2 (5)
	All	83	0.78 (0.49-0.91)	21 (25)	17 (20)	1 (6)	4 (5)
Spring 2021	META	42	0.76 (0.63-0.97)	5 (12)	4 (10)	1 (25)	4 (10)
	NO META	40	0.74 (0.53-0.90)	18 (45)	17 (43)	7 (41)	8 (20)
	All	82	0.76 (0.53-0.94)	23 (28)	21 (26)	8 (38)	12 (15)
Fall 2021	META	42	0.45 (0.37-0.71)	6 (14)	4 (10)	0 (0)	0
	NO META	42	0.44 (0.21-0.57)	14 (33)	14 (33)	8 (57)	3 (7)
	All	83	0.45 (0.31-0.62)	20 (24)	18 (22)	8 (44)	3 (4)
Overall	META	167	0.81 (0.55-0.97)	31 (19)	24 (14)	2 (8)	6 (4)
	NO META	164	0.67 (0.45-0.91)	55 (34)	50 (30)	16 (32)	13 (8)
	All	331	0.75 (0.48-0.93)	86 (26)	74 (22)	18 (5)	19 (6)

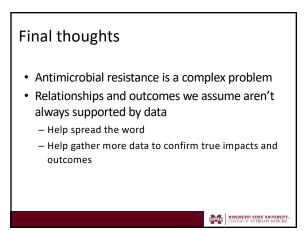
Variable	Value	Estimate	Standard Error	Р
Group	META	Ref	Ref	Ref
	NO META	-0.107	0.033	<mark>0.001*</mark>
Trial	Fall 2019	Ref	Ref	Ref
	Fall 2020	-0.219	0.044	<mark><0.0001</mark> *
	Spring 2021	-0.196	0.047	<mark><0.0001</mark> *
	Fall 2021	-0.461	0.045	<0.0001*










NO META 1.5133 0.529-4.331 0.44 ated Yes Ref Ref Ref	NO META 1.5133 0.529-4.331		
eated Yes Ref Ref Ref		NO META 1 5133 0 520-4 3	Ref
	Treated Yes Ref Ref	NO WILLA 1.5155 0.525-4.5.	31 0.44
No 0.0574 0.016-0.205 <mark><0.0001</mark>		Yes Ref Ref	Ref
	No 0.0574 0.016-0.205	No 0.0574 0.016-0.20	05 <mark><0.0001</mark> *

Summary AMR and MDR in *M. haemolytica* and other BRD agents used to be rare In the past 5 years, reports indicate that BRD bacteria can carry genetic elements encoding MDR But we don't always see high prevalence of MDR agents when AM are used extensively

• Does high prevalence of MDR *M. haemolytica* increase

• How does prevalence of MDR Mh increase so rapidly?

- Do MDR bacteria or the genetic elements encoding MDR

• Do highly prevalent MDR *M. haemolytica* increase risk

HISSISSIPPI STATE UNIVERSITY COLLEGE OF VETERINARY MEDICINE

- are there microbial reservoirs of resistance genes?

Questions remaining

risk for treatment failure or death?

transmit rapidly between cattle?


for generation of other MDR pathogens?

Summary

- Recent surveys of high risk stocker cattle managed conventionally with metaphylaxis: prevalence of MDR *M. haemolytica* nasopharyngeal shedding can increase rapidly
 - Genetically diverse *M. haemolytica* can carry similar AMR genes
 - Negative impact on morbidity or mortality has not been clearly evident

MISSISSIPPI STATE UNIVERSITY.

45

	No. of Cattle	% of Cattle
Risk status of cattle		
Low risk	2,420	44.0
Medium risk	832	15.1
High risk	1,356	24.7
Very high risk	890	16.2
Arrival season of cattle		
Winter (Jan-Mar)	876	15.9
Spring (Apr-Jun)	851	15.5
Summer (Jul-Sept)	1,623	29.5
Fall (Oct-Dec)	2,148	39.1
Pen size		
<101	459	8.4
101-200	1,858	33.8
201-300	1,409	25.6
301-400	1,173	21.3
>400	599	10.9

49