Equine Neuromuscular Disorders Associated with Vitamin E Deficiency

Toby Pinn-Woodcock, DVM, DACVIM

Veterinary Support Services
Animal Health Diagnostic Center

Large Animal Internal Medicine Service
Cornell Equine and Nemo Farm Animal Hospital

Cornell University

3 Disorders:

1. eNAD/EDM
2. Vitamin E Deficient Myopathy
3. Equine Motor Neuron Disease (EMND)
Vitamin E

Function – anti-oxidant and free radical scavenger

Sources
• Lush green grass - Horses must graze 6hr to acquire 500 iu vitamin E
• Mare’s milk

Forms
• Natural – RRR-α-tocopherol, d-α-tocopherol
 • Far more bioavailable than synthetic
• Synthetic – d,l-α-tocopherol or all-rac-α-tocopherol

Absorption requires lipid in diet
• Supplementation with grain or vegetable oil improves absorption

National Research Council (NRC) daily requirement:
• 1 IU/kg per day maintenance
• 2-4 recommended for foals, lactating mares and horses in high levels of work

Feed labels report as PPM = mg/kg of feed
• 1 unit Vit E = 0.7mg D-α-tocopherol or 1mg D-L-α-tocopherol

Vit E reference intervals in serum
(Finno and Valberg, JVIM 2012):
• <1ug/ml – deficient
• 1-2 ug/ml – marginal with possible subclinical effects
• 2-4 ug/ml – normal
Vitamin E deficiency at Cornell’s AHDC

%VitE Deficient by Species 2017-2021

<table>
<thead>
<tr>
<th>Patient Breed (groups)</th>
<th>Test Description</th>
<th>LOW</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donkeys</td>
<td>Vitamin E Alcohol, in se..</td>
<td>32.86%</td>
<td>283</td>
</tr>
<tr>
<td>Mules</td>
<td>Vitamin E Alcohol, in se..</td>
<td>32.69%</td>
<td>52</td>
</tr>
<tr>
<td>Zebra</td>
<td>Vitamin E Alcohol, in se..</td>
<td>33.33%</td>
<td>42</td>
</tr>
<tr>
<td>Horses</td>
<td>Vitamin E Alcohol, in se..</td>
<td>24.30%</td>
<td>26,702</td>
</tr>
</tbody>
</table>

How is Vitamin E measured?

Separated serum
Some labs - CSF, liver, plasma
 • Red top tube (no serum separator tubes)

Separate serum within 4hrs of collection

Unstable
 • Protect from light (wrap tube in tin foil)
 • Refrigerate
Vitamin E

Overdose?
Do not exceed 20 IU/kg (10,000 units in 1000 lb horse)
• Coagulopathy
• Impaired bone mineralization
• 10x NRC in healthy exercising horse may interfere with absorption of other nutrients

Vitamin E

• Horses managed similarly will have varying serum Vit E levels

• The quality of Vit E supplements fed to horses is variable

• Pitel et al, 2020
 • 85% of horses supplemented with Vit E had suboptimal levels

• 3 natural water-soluble Vit E products on market
 • Emcelle (Stewart Products) is in:
 • Elevate W.S. (Kentucky Performance Products)
 • NanoE (KER)
eNAD/EDM

• eNAD: Equine Neuroaxonal Dystrophy (eNAD)
• EDM: Equine Degenerative Myeloencephalopathy

• Similar histologic lesions

• eNAD is a more localized version of EDM
 • Dystrophic neurons and axons
 • Vacuolization and spheroid formation

eNAD/EDM

• Most common cause of ataxia in horses
 • New Bolton Center – Dr. Amy Johnson
 • eNAD/EDM pathologically diagnosed in 25% of patients over 5yr (2-17-2021)

• Predisposing Factors:
 • Genetics
 • Lack of access to lush green grass
NAD/EDM Signalment

- Many breeds affected - Morgans, Andalusions, Haflingers, Arabians, Standarbreds, among others...
- Onset before 1yr usually, can vary 3wks-3yrs
- Adult sport horses after periods of successful competition or training
 - (S. Johnsen, New Bolton Center, unpublished)

eNAD/EDM – Clinical Signs

- Symmetric ataxia
- Abnormal base-wide stance at rest
- Proprioceptive deficits in all limbs
- 2-beat pacing gait at the walk
- Loss of long spinal reflexes (cervicofacial, laryngeal adductor slap, cutaneous trunci)
- No neurogenic muscle atrophy – BCS usually 5-6/9
- Recumbency rare – occurs if lesions involve motor tracts of ventromedial funiculi or if EMND is comorbidity
New Bolton Center Caseload (VCNA 2022)

• Older sport horses 5-15yrs
• Present after period of successful competition or training
• Present for abnormal behavior, not ataxia
 • Bad behavior under saddle
 • Spooking, bucking, rearing, bolting, stopping at fences
• Changes in demeanor – new lethargy or anxiety
• Abnormal interaction with other horses/people
 • Aggression or loss of interest
• Abnormal sensory function – loss of sensation or hyperreactivity
• Gait and stance abnormalities 1-2/5 on Mayhew scale

eNAD/EDM

• Weanling Paint cross
• History of progressive hind limb weakness and difficulty rising over ~2 months
• Stabled at large boarding facility in upstate NY with limited pasture access
• No vitamin E supplementation – fed hay and mare and foal grain
eNAD/EDM - Pathophysiology

Pathogenesis unclear
- Related to oxidative stress and anti-oxidant deficiency
- Vit E prevents oxidation of CNS membrane lipids and facilitates axonal transport of macromolecules

Risk Factors:
- Use of insect repellent in foals
- Foal exposure to wood preservatives (creosote, oil-based stain)
- Foals spending time on dirt lot, lack of access to lush green grass
- Overcrowding
- Poor quality hay

Vit E in serum of these cases is marginal or low

eNAD/EDM – Histological Lesions

eNAD - Lesions localized to brainstem
- Lateral cuneate nucleus > medial cuneate and gracilis nuclei

EDM – Axonal necrosis and demyelination extends into dorsal and ventral spinocerebellar tracts and ventromedial funiculi of the cervicothoracic spinal cord

Graphic courtesy Dr. Andrew Miller, Cornell Anatomic Pathology
eNAD/EDM – Histological Lesions

- Ceroid lipofuscin deposits in retinal pigmented epithelium and endothelium of spinal cord capillaries
- Lipofuscin is a product of peroxidation of membrane polyunsaturated fatty acids

Neuroanatomical Explanation of Clinical Signs

- **Cuneate fasciculus** – discriminative touch and proprioception of the thoracic limbs
- **Gracile fasciculus** – discriminative touch of pelvic
- **Nucleus thoracicus of SC** – origin of dorsal spinocerebellar tracts and involved in proprioception of pelvic limbs
eNAD/EDM - Diagnosis

- *Can’t be definitively diagnosed ante-mortem*
- Ddx if low to marginal serum Vit E, other Ddx ruled out and risk factors present

- Phosphorylated neurofilament (pNF-H) heavy chain protein assay – UC Davis
 - Protein biomarker of axonal damage
 - Used to support Ddx of eNAD/EDM ante-mortem
 - Must first rule out infectious diseases, esp. EPM and trauma
 - Unable to distinguish from cervical vertebral compressive myelopathy

pNF-H Diagnostic Flow Chart

- Neurological signs/disease
- Exclude trauma and other likely infectious diseases (West Nile Virus, Equine Herpesvirus Myeloencephalopathy, etc.)
- EPM Testing (serum and CSF)
- EPM Positive
- Serum >1 ng/mL
- EPM Negative
- Serum <1 ng/mL
- pNF-H biomarker test
- Serum >1 ng/mL & CSF >3 ng/mL
- Serum <1 ng/mL & CSF >3 ng/mL
- Serum <1 ng/mL & CSF <3 ng/mL
- EPM
- Likely eNAD
- Cannot exclude eNAD
- Neurologic disease unspecified
- Cannot exclude neurologic disease

- Low sensitivity 12% - lower values don’t rule out eNAD/EDM or CVCM
- High specificity 99% - likely eNAD/EDM or CVCM present
eNAD/EDM - Treatment

Supplement broodmares and foals with natural vitamin E

- 10iu/kg for last trimester and first 2 yrs of life
- If familial predisposition, even supplemented foals may be affected

Treatment after diagnosis rarely results in improvement

Treatment may prevent worsening of clinical signs

Adult cases – treatment doesn’t prevent dangerous behaviors that pose safety hazard to handlers

Equine Motor Neuron Disease (EMND)

- Acquired neurodegenerative disorder in ventral horns of grey matter and brain stem nuclei
- First reported in 1990 in horses of northeastern United States
- Pathogenesis
 - Systemic oxidant stress
 - Involves oxidatively active type 1 myofibers primarily (tailhead, stay apparatus)
Equine motor neuron disease (EMND): a neurodegenerative disorder of the somatic GSE lower motor neurons innervating skeletal muscle.
EMND – Signalment

Signalment
• Age range 2-27 years
• Often middle-aged, 16y age of max risk

Risk factor
• Lack of access to lush green grass, without Vit E supplementation

Diagnosed in cases of GI or hepatic disease despite adequate Vit E due to malabsorption

Can be reproduced experimentally after 18-37 months deficiency

EMND – Clinical Signs

Clinical signs are related to denervation of muscles
• No ataxia
• Muscle weakness and atrophy occurs simultaneously
• Fasciculations in anti-gravity muscles
• Generalized sweating
• Horse on a ball stance with limbs underneath
• Head carried below shoulders due to weak neck muscles
• Tail head raised – atrophy and contracture of dorsal coccygeal muscles
• 40% cases have lipofuscin pigment above optic disk at tapetal non-tapetal junction (no vision loss)
EMND Diagnosis

- Deficient vitamin E in serum
- Serum CK and AST may be elevated (excessive laying down)

Biopsy

1. Ventral branch spinal accessory nerve at medial belly sternocephalicus muscle
 - Wallerian degeneration of axons, schwann cell proliferation
2. Formalin-fixed sacrocaudalis dorsalis muscle of tailhead – rich in type I myofibers
 - Angular atrophy of myofibers (Se 90%, low specificity)

Necropsy

- Diffuse degeneration and loss of somatic motor neurons in ventral horns of spinal cord
- Degenerative changes in ventral roots of peripheral nerves
- Brainstem somatic motor nuclei affected
- Skeletal muscle angular atrophy of myofibers

https://cvm.msu.edu/research/faculty-research/comparative-medical-genetics/valberg-laboratory/for-veterinarians/obtaining-and-submitting-a-histopathology/sacrocaudalis-dorsalis-medialis-biopsy
EMND Treatment

- 10-20 IU/kg/day of natural Vit E
- Offer pasture access and high quality forage/concentrate

Outcome
- 40% horses deteriorate or are euthanized within 6wks onset
- 40% show marked improvement after treatment
- 20% survive with permanent muscle wasting/emaciation
 - Glial scars with astrocytes and lipofuscin deposits in macroglia

Vitamin E Responsive Myopathy (VEM)

- Muscle wasting and weakness without motor nerve damage
- Reversible
- Pathogenesis – skeletal muscle mitochondrial oxidative stress
 - May precede EMND
Vitamin E Responsive Myopathy (VEM)

- **Clinical Signs:**
 - Loss of muscle mass
 - Toe dragging
 - Poor performance
 - Weakness
 - Muscle fasciculations

Diagnosis – Bedford et al., 2013

- Vitamin E levels in serum usually low, can be adequate
- Fresh tissue biopsy of sacrocaudalis dorsalis muscle
 - Moth-eaten staining pattern of mitochondria without neurogenic angular atrophy of muscle fibers
 - Diagnosis previously missed because staining doesn’t occur in formalin fixed tissue
Vitamin E Responsive Myopathy (VEM)

- Complete recovery is possible with vitamin E supplementation
 - 10 iu/kg per day for >3 weeks

Figure 1—Photographs of T, the 3-year-old affected Thoroughbred mare. (A) Prior to and after (B) 3 months of vitamin E treatment. In panel A, notice the marked generalized muscle atrophy, termed under stance, and elevated tail head. In panel B, notice the normal body condition, muscle mass, and stature.

JAVMA, Vol 242, No. 9, April 15, 2013

Impact of alpha-tocopherol deficiency and supplementation on sacrocaudal and gluteal muscle fiber histopathology and morphology in horses

Figure 4: Cross sections of gluteal muscle stained with NADH-TR (bar = 100 μm) and view of the hindquarter muscle of the respective horse. A. Muscle fibers with a normal mosaic-staining pattern of oxidative and non-oxidative fibers in a prospective a TP-Deficient horse on day 56 (x20). B. Normal staining of the same Quarter Horse as in (A). C. Increased fiber size variation apparent in the gluteal muscle of a retrospective VEM horse (x20). D. Note the atrophy of the biceps femoris (white arrow), middle (red arrow), and superficial (black arrow) gluteal muscles in the horse represented in (E). NADH-TR. E. Subacrocoelemal mitochondrial aggregates, angulated atrophy, and smaller cross-sectional area of gluteal muscle fibers in another retrospective VEM horse (x20). F. Note the atrophy of the biceps femoris (white arrow), middle (red arrow), and superficial (black arrow) gluteal muscles in the horse represented in (E). NADH-TR.

TP, alpha-tocopherol; VEM, vitamin E-responsive myopathy

Bookbinder et al, 2019
<table>
<thead>
<tr>
<th>Disorder</th>
<th>Clinical Signs</th>
<th>Diagnosis</th>
<th>Treatment/Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>eNAD/EDM</td>
<td>Spinal ataxia, onset <1yr</td>
<td>• Can’t diagnose definitively ante-mortem</td>
<td>• Deficits can be stabilized with treatment, but considered permanent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Histopathological diagnosis required</td>
<td>• Prevention through broodmare and foal supplementation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Prevention through access to lush green grass</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Prognosis poor</td>
</tr>
<tr>
<td>EMND</td>
<td>• Adult onset</td>
<td>• Low serum Vit E</td>
<td>• Prevention – green pasture access or Vit E supplementation</td>
</tr>
<tr>
<td></td>
<td>• Weakness, muscle atrophy, camped under stance with raised tailhead, increased</td>
<td>• Histopathological diagnosis ante-mortem using fixed sacrocaudalis dorsalis</td>
<td>• Treatment with Vit E at 10-20 iu/kg</td>
</tr>
<tr>
<td></td>
<td>time recumbent</td>
<td>medialis muscle biopsy H&E stain for neurogenic atrophy</td>
<td>• Prognosis fair</td>
</tr>
<tr>
<td>VEM</td>
<td>Weakness, muscle atrophy, fasciculations</td>
<td>• Serum Vit E low to normal</td>
<td>• Prevention – green pasture access or Vit E supplementation</td>
</tr>
<tr>
<td></td>
<td>High CK and ASK</td>
<td>• Histopathological diagnosis ante-mortem using fresh sacrocaudalis dorsalis</td>
<td>• Treatment with Vit E at 10-20 iu/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>medialis muscle biopsy and NADH staining for mitochondrial abnormalities</td>
<td>• Prognosis good</td>
</tr>
</tbody>
</table>

Adapted from Finno and Johnson, VCNA 2020

References

2. Finno and Johnson. 2022. Equine Neuroaxonal Dystrophy and Degenerative Myeloencephalopathy. VCNA-Equine
6. https://cvm.msu.edu/research/faculty-research/comparative-medical-genetics/valberg-laboratory